Postgraduate Department of Mathematics

M.Sc. Mathematics

Programme Outcomes

PO1	To help the students to learn Mathematics as per modern requirement.					
PO2	To improve the logical, reasoning, analytical and problem solving skills of students.					
PO3	o give an orientation towards the applications of Mathematics.					
PO4	To build interest and confidence in learning the subject in the students.					
PO5	To create a research aptitude and culture in young minds.					
PO6	To encourage students to pursue higher studies in mathematics.					
PO7	To ensure that the learning of mathematics becomes more alive, vibrant, relevant and meaningful and understand the world around them through Mathematics.					
PO8	To motivate students to uphold scientific integrity and objectivity in professional endeavors.					

Programme Specific Outcomes

PSO1	Enable to acquire real insight to Modern Mathematics.						
PSO2	Build up a strong foundation in classical areas like Analysis, Abstract Algebra and Measure theory.						
PSO3	Build interest and confidence in the subject to pursue higher studies in Mathematics.						
PSO4	Inculcate a research mind among students through project work.						
PSO5	Improve the level of understanding in areas of Applied Mathematics.						
PSO6	Develop the skill of modeling real world problems into Mathematics problems and find solutions in a logical way.						

SEN	SEMESTER 1					
			0.01	Familiarize Direct products, finitely generated		
			CO1	Abelian groups, factor groups.		
				Understand inner automorphism, group action on		
			CO2	sets, isotropy subgroups Apply G-sets to counting		
				Understand and apply Isomorphism theorems and		
		Abstract	CO3	Sylow theorems		
1	ME010101	Algebra	004	Conceive more on the field of quotients of an		
			CO4	integral domain and factor rings		
				Factorise polynomials over a field, understand		
			CO5	polynomial rings and associated properties, derive		
				Eisenstein criterion for irreducibility of polynomials		
			CO6	Understand the ideal theory in polynomial rings		
		Linear Algebra	CO1	Conceive more on the theory of Vector spaces		
			CO2	Understand the algebra of linear transformation and		
				linear functional.		
			CO3	Represent transformations by matrices and find		
	1.010100		0.05	transpose of a linear transformation		
2	ME010102		CO4	Familiarize general properties of determinant and		
				applications		
				Understand elementary canonical forms,		
			CO5	characteristic values, annihilatory polynomials,		
				invariant subspaces, Direct sum Decompositions		
				Familiarize topological spaces, Bases and Sub bases,		
			CO1	Subspaces		
				Understanding the concepts of Closures,		
		Basic Topology	CO2	Neighbourhoods, Interior and Accumulation points.		
3	ME010103			Familiarize the concepts of continuous functions and		
			CO3	Quotient spaces		

Course Outcomes

				Identify spaces with special properties like
			CO4	Compactness and Lindelloffness, Second
		04	countability, First countability and their properties	
				Understand Connectedness, Local connectedness and
			CO5	Path connectedness of spaces
				Acquire basic concepts of Separation axioms and
			CO6	understand hierarchy of separation axioms
				Understanding and familiarize, functions of bounded
			CO1	variation, total variation, additive property of total
				variation and their properties.
				Familiarizing rectifiable path and arc length,
			CO2	additive and continuity properties of arc length,
				equivalence of paths and change of parameter.
				Understanding and use the basic concepts and
4	ME010104	Real Analysis	CO3	properties of the Riemann - Stieltjes Integral and
				integration vector valued functions
				Attainment of a deeper and wider knowledge of
			CO4	Sequence and Series of Functions and uniform
				convergence.
				A deeper Knowledge on Weierstrass Approximation
			CO5	Theory and algebraic completeness of complex field
			CO1	Familiarize basic concepts of graphs, automorphism
				of a simple graph, line graphs, operations on graphs,
				graph products, directed graph and tournaments.
			CO2	Learn more on connectivity ,blocks and cyclical
				edge connectivity
		Cuoph Theorem	CO3	Understand theorems and concepts related to Trees
5	ME010105	O105 Graph Theory		and apply these in everyday life problems.
			CO4	Understand more about Eulerian and Hamiltonian
				Graphs
			CO5	Acquire knowledge on Graph Colorings and its
				applications
				Understand more about Eulerian and Hamiltonian Graphs Acquire knowledge on Graph Colorings and its

			CO6	Familiarize Planar graphs, Plane graphs, properties
			000	of plane graphs including Euler Formula and its
				Consequences and Dual of a Plane Graph
			CO7	
			07	Understand Spectral Properties of Graphs
SEN	MESTER 2	-		-
			CO1	Familiarize extension fields, algebraic extensions
			CO2	Understand geometric constructions finite fields
		Advanced		Acquire knowledge about Gaussian integers and
		Abstract	CO3	multiplicative norms
6	ME010201	Algebra	CO4	Find automorphism of fields
		_		Understand isomorphism extension theorem and find
			CO5	splitting fields
			CO6	Understand Galois Theory and its applications
				Understand and apply the Urysohn Characterization
	ME010202	Advanced Topology	CO1	of normality and Tietze Characterization of normality
			CO2	Familiarize the product space and product topology
			CO3	Identify productive properties
7				Understand and apply embedding lemma, Tychonoff
/	WIL010202		CO4	Embedding and The Urysohn Metrisation Theorem
			CO5	Understanding the concept of Net and its
				convergence
			CO6	Familiarize the idea of Homotopy of paths.
			C01	Identify Symbols and Symbolic Operations in Python
			CO2	Solve Equations and Plot Using SymPy
				Apply the techniques of differentiation and
8	ME010203		CO3	integration to solve problems
		Numerical Analysis with		Program problems to verify the continuity of a
		Analysis with Python	CO4	function at a point, area between two curves and
				finding the length of a curve
			CO5	Familiarize Interpolation and Curve Fitting
			CO5	Find roots of equations using iterative methods
				Apply Gauss Elimination Method, Doolittle's
			CO7	· · · · · · · · · · · · · · · · · · ·

8
ing
aphic
gence of
ns in
X
unctions
s Theorem,
ns in
alued
integrals
ications of
of sets
easurable
integral
r General
cations of
r

SEN	SEMESTER 3					
			CO1	Familiarize Harmonic Functions and its basic		
			CO1	properties,		
				Understand and apply the Mean-Value Property,		
			CO2	Poisson's Formula, Schwarz's theorem and the		
				Reflection Principle		
				Understand the theory and applications of the power		
		Advanced	CO3	series expansions.		
		Complex		Solve problems using Jensen's Formula and		
11	ME010301	Analysis	CO4	Hadamard's Theorem. problems		
			a a a	Familiarize the Riemann Zeta Function and its		
			CO5	properties.		
				Understand and apply the Riemann Mapping		
			CO6	Theorem, Boundary behaviour and the Reflection		
				Principle		
			007	Familiarize the idea of the Weierstrass' p-function		
			CO7	and the functions ζ and σ .		
			CO1	Familiarize the orthogonal trajectory of the system of		
			COI	curves on a given surface		
			CO2	Solve differential equation of the form $dx/P = dy/Q =$		
			02	dz/R		
			CO3	Identify Pfaffian differential forms and solve of		
			COS	Pfaffian differential equations in three variables		
10		Partial		Find integral surfaces passing through a given curve		
12	ME010302	Differential	CO4	and surfaces orthogonal to a given system of		
		Equations		surfaces		
			CO5	Understand nonlinear partial differential equation of		
			005	the first order and methods of solutions		
			CO6	Find solutions of Linear partial differential equations		
				with constant coefficients		
			CO7	Solve non linear equations of the second order		
			CO8	Familiarize families of equipotential surfaces		

		³ Multivariate Calculus and Integral Transforms	CO1	Familiarize different forms of Fourier series and applications
13	ME010303		CO2	Understanding the Fourier integral theorem, the exponential form of the Fourier integral theorem and the convolution theorem for Fourier transforms
			CO3	Conceivement of the theory of directional derivatives, the total derivative and Jacobian matrix of a linear function.
			CO4	Understanding on the Chain rule, mean value theorem for differentiable functions, inverse function theorem and the implicit function theorem
			CO5	Familiarize integration in higher dimensions and Differential Forms
			CO1	Familiarize with Normed Spaces and their properties.
			CO2	Understand compactness of normed spaces
			CO3	Familiarize Linear Operators, Bounded and Continuous Linear Operators and Linear Functionals
			CO4	Understand Normed spaces of operators, Dual space
			CO5	Familiarise Inner Product Space, Hilbert space and further properties.
14	ME010304	Functional	CO6	Understand orthonormal sets and sequences
		Analysis	CO7	Derive representation of functional on Hilbert Spaces
			CO8	Conceive more on the theory of operators- Hilbert- Adjoint Operator, Self-Adjoint, Unitary and Normal Operators, Adjoint Operators
			CO9	Understand Zorn's lemma, Hahn-Banach theorem, Hahn-Banach theorem for Complex Vector Spaces and Normed Spaces

			901	
			CO1	To acquaint with simplex method, simplex
				multipliers, revised simplex method and dual
				simplex method and develop the ability to solve
				linear programming problems
			CO2	Familiarise cutting plane method, branch and bound
				method and develop the ability to solve General
15	ME010305	Optimization		I.L.P. and M.I.L.P problems.
	WIL010303	Techniques	CO3	Conceive the concepts of Goal programming
				problem and the method to solve it.
			CO4	Familiarize the concept of Networks and develop the
				ability to solve minimum path problems, spanning
				tree of minimum length, maximum flow problem
				and Schedule sequential activities.
		CO5	Understand non-linear programming	
SEM	IESTER 4			
				Understand category theorem and Uniform
			CO1	Boundedness theorem
				Familiarise Convergence of Sequences of Operators
			CO2	and Functionals
				Understand Open Mapping Theorem and Closed
			CO3	Graph Theorem
				Familiarise Spectral Properties of Bounded Linear
		Spectral	CO4	Operators
16	ME010401	Theory	CO5	Apply Complex Analysis in Spectral Theory
				Familiarize Banach Algebras and Properties
			CO6	
			007	Learn compact Linear Operators on Normed spaces
			CO7	and their spectral properties
				Understand Spectral Properties of Bounded Self
			CO8	adjoint linear operators
				Understand Projection Operators and their grant stice
			CO9	Understand Projection Operators and their properties.

			CO1	Familiarize the theory of Arithmetic Functions
			CO2	Understand The Möbius function $\mu(n)$, The Euler totient function $\phi(n)$, and the relation connecting μ
			02	and ϕ
			CO3	Find product of arithmetical functions, Dirichlet
				inverses and the Möbius inversion formula
			CO4	Familiarize Multiplicative functions and Dirichlet
	ME010402		04	Multiplication,
		Analytic		Understand The Liouville's function, the divisor function and Generalized convolutions
17		Number	CO5	
		Theory	CO6 and its applications CO7 Understand some Elementary Theorems of Distribution of Prime Numbers	Conceive more on the theory Arithmetical functions
		·		and its applications
				Understand some Elementary Theorems on the
				Distribution of Prime Numbers
				Acquire deep knowledge on the theory of congruence
				Understand more about Quadratic Residues and
			CO9	further properties of Quadratic Residues
				Familiarize Primitive roots and reduced residue
			CO10	systems

Elective Courses

SEN	SEMESTER 4						
			CO1	Explain the concepts of differential geometry and its role in modern mathematics			
		Differential	ential CO2	To obtain sound knowledge in understanding the basic concepts in geometry of curves and surfaces in Euclidean space, especially			
1	ME800401	Geometry	CO3	To study geodesics and parallel transport			
			CO4	To introduce parametrized surface and study its basic properties			
			CO5	To gain sufficient knowledge for generalizing these concepts to higher dimensions			

	NE200402	Algorithmic	CO1	Acquire knowledge on Algorithms and its complexity and develop a feel for the concept of an efficient algorithm. Learn the basic properties of trees and their
2	ME800402	Graph	CO2	usefulness in algorithmic techniques.
		Theory	CO3	Familiarize with concepts of Networks and understand how the max-flow min-cut algorithm can be used to find the connectivity and edge connectivity of a graph.
			CO4	Study matchings and factorizations of graphs.
3	ME800403	Combinatorics	CO1 CO2 CO3	To use algebraic concepts to solve basic problems in real life using permutations and combinations To introduce Ramsey type problems and Ramsey numbers To get an idea about generating functions and recurrence relations.